
Success Story

www.indiumsoftware.com

Azure DevOps -
GitHub Merge Automation

Digital
Services

The client is a leading mobile technology service
provider helping taxi companies and ride-hailing
service providers get instant access to
cutting-edge technology solutions for the riders,
drivers, dispatch coordinators, and fleet
managers.

About Client

Indium developed a solution which helped the
client to automate the merging of various code
branches, through shell scripts. The utility
auto-identifies the work items in Azure DevOps,
based on the QA completion status and merges
the code changes into the production branch in
Git repositories.

Project Overview

Business
Transport

Tools
Azure CLI, Git CLI, GitHub CLI, Shell Script

Domain
DevOps

The solution helped to achieve near 100%
accuracy in merging all Utility requests,
without any human error
90% reduction in time and e�ort, compared to
the previous manual process
Developers and QA engineers got a clear
visibility of the functionalities

Business Impact

Develop an automatic solution to merge all the
code commits
Utilities to retrieve the work items in Quality
Assurance stage from Azure DevOps.
Ability to merge the code associated with user
stories/ bugs with the production code branch
Visibility for QA Engineers to check
functionality in the UAT environment

Business Requirement

Key Highlights
Near 100% accuracy in merging all Utility requests

90% reduction in time and e�ort by automating
the process

Utility to retrieve the work items (User stories,
bugs) in Quality Assurance stage from Azure
DevOps, using Azure CLI
Utility to identify all the code commits/
merged pull requests made by developers in
Develop branch, using
Git CLI
Utility to merge all the commits in the pull
requests into production branch, using Git CLI
and GitHub CLI

Solution
Designed and developed a solution to merge all
the QA certified changes into UAT environment:

Architecture

Process Flow - Utility 1
List Repos & Pull requests (PRs) using ADO CLIInput

User provided ADO
Work item list /

“QA Completed State”
in ADO

Identify repos and pull
requests associated

with work items &
sort them repo &

PR Creation
pr_final.txt

Output

QA informs testing completion
of work items in QA1 environment

to DevOps

DevOps to get the list of
work items from QA

DevOps alters to find by
work item IDsExecute Utility 1

(ado_list_pr.sh)

Utility creates a file with list of
repos and PR IDs as a sorted list

(pr_final.txt)

QA Completed
State vs

Specific Work
Items

Specific
Work Items

QA Completed

Process Flow - Utility 2
Merge Commits in Temp Branch using GitHub CLIInput

Sorted list of repos
and pull request IDs

Invoke utility 3 with
Repo, merge commit ID
list, target branch and

Temporary branch

Output

Utility 2 picks pr_final.txt &
goes through each pull request

Ignore the pull request

Invoke utility 3 for all
repos with mega commits

Aggeregate the merge
Commit ID

Utility seeks target repo
(release vs production)

and temporary branch name

Check pull
request status?

Not Merged

branch_pr.sh

Merged

Process Flow - Utility 3
Merge Commits in Temp Branch & create PR using

Git & GitHub CLI
Input

Repo, merge commit ID
List, target branch,
temporary branch

Pull request creation
in GitHub

Output

branch_pr_merge.shCreate temporary branch
sourced from target branch

Identify all individual commits
from merge commits

Cherry-pick those commits
into temporary branch

Manually revolve conflicts
and create pull request

Create a pull request against
the target branch

Conflicts?

No

General Inquiries
info@indiumsoftware.com

Sales Inquiries
sales@indiumsoftware.com

INDIA

Chennai | Bengaluru | Mumbai
Toll-free: 1800-123-1191

UK

London

MALAYSIA

Kuala Lumpur
+60 (3) 2298 8465

USA

Cupertino | Princeton
Toll-free: 1 888 207 5969

SINGAPORE

+65 9630 7959

